欧美13_: 凸显现实的集体行动,难道不值得我们赞赏?

欧美13: 凸显现实的集体行动,难道不值得我们赞赏?

更新时间: 浏览次数:959



欧美13: 凸显现实的集体行动,难道不值得我们赞赏?《今日汇总》



欧美13: 凸显现实的集体行动,难道不值得我们赞赏? 2025已更新(2025已更新)






大兴安岭地区呼玛县、南阳市淅川县、大庆市大同区、儋州市雅星镇、韶关市新丰县、攀枝花市盐边县、开封市通许县、牡丹江市东安区、临汾市尧都区




51漫画登录界面观看免费漫画:(1)


内蒙古乌兰察布市集宁区、益阳市南县、昌江黎族自治县叉河镇、宜宾市翠屏区、昆明市官渡区、宜宾市叙州区、赣州市龙南市、汉中市洋县、安阳市殷都区延边和龙市、濮阳市台前县、海北刚察县、武汉市汉南区、重庆市涪陵区、安康市汉阴县、临高县东英镇、合肥市长丰县、南平市延平区哈尔滨市南岗区、凉山甘洛县、上饶市婺源县、太原市古交市、厦门市翔安区、六安市裕安区、吕梁市临县、临夏康乐县、盘锦市大洼区


青岛市即墨区、阜新市细河区、丹东市宽甸满族自治县、广西柳州市城中区、黔南独山县、广西钦州市灵山县鄂州市鄂城区、十堰市张湾区、赣州市兴国县、宝鸡市眉县、常德市汉寿县、甘孜白玉县、南平市浦城县、阜阳市临泉县




楚雄大姚县、广州市花都区、六盘水市水城区、忻州市原平市、临夏临夏县、甘孜石渠县、莆田市仙游县赣州市信丰县、通化市辉南县、内蒙古呼伦贝尔市扎赉诺尔区、雅安市雨城区、长春市朝阳区、重庆市大渡口区、泰州市泰兴市、丹东市元宝区、陵水黎族自治县文罗镇、阜阳市太和县株洲市天元区、安顺市普定县、漯河市郾城区、曲靖市沾益区、黔东南镇远县、大兴安岭地区漠河市、衢州市龙游县、琼海市大路镇、德州市宁津县巴中市通江县、宜昌市枝江市、西安市周至县、大同市新荣区、河源市紫金县、绥化市肇东市乐东黎族自治县尖峰镇、白沙黎族自治县青松乡、淄博市高青县、眉山市仁寿县、丽江市永胜县、株洲市醴陵市、合肥市肥东县、安庆市望江县


欧美13: 凸显现实的集体行动,难道不值得我们赞赏?:(2)

















永州市零陵区、葫芦岛市连山区、阳泉市矿区、资阳市安岳县、铜仁市松桃苗族自治县、绥化市庆安县、恩施州宣恩县、东方市大田镇、昆明市五华区重庆市开州区、运城市万荣县、内蒙古锡林郭勒盟正镶白旗、吕梁市岚县、株洲市渌口区、临汾市浮山县、白沙黎族自治县青松乡、攀枝花市东区太原市阳曲县、西宁市城北区、长春市农安县、庆阳市华池县、定安县新竹镇














欧美13维修后质保服务跟踪:在质保期内,我们会定期回访了解设备使用情况,确保设备稳定运行。




西宁市城西区、牡丹江市林口县、庆阳市合水县、通化市二道江区、泰州市泰兴市、兰州市七里河区、东方市板桥镇、泉州市金门县、大理云龙县






















区域:长治、淮南、石家庄、三亚、平凉、巴中、梅州、德州、韶关、东营、郑州、克拉玛依、西双版纳、太原、黄南、漯河、吴忠、延安、鞍山、厦门、孝感、楚雄、玉林、海南、阳江、海东、盘锦、齐齐哈尔、巴彦淖尔等城市。
















国内精品一线二线三线在哪里

























宜宾市南溪区、内蒙古包头市九原区、营口市盖州市、商洛市商南县、黄石市西塞山区永州市宁远县、鹰潭市月湖区、洛阳市新安县、屯昌县南吕镇、怀化市溆浦县、东营市东营区、泰州市姜堰区内蒙古呼伦贝尔市满洲里市、嘉峪关市文殊镇、信阳市罗山县、天水市秦安县、渭南市临渭区、聊城市东昌府区、吉林市蛟河市、中山市民众镇、白山市抚松县、四平市伊通满族自治县达州市宣汉县、临沂市兰山区、大同市阳高县、东方市新龙镇、黔南贵定县、信阳市潢川县、黔西南册亨县、鸡西市鸡东县、广西柳州市柳南区、龙岩市长汀县






驻马店市遂平县、中山市中山港街道、阳江市阳东区、宁德市古田县、东莞市中堂镇、海西蒙古族天峻县、苏州市昆山市、武汉市洪山区、滨州市阳信县、黄冈市团风县威海市环翠区、台州市玉环市、宁夏固原市原州区、宜宾市屏山县、遵义市习水县、深圳市坪山区、遵义市正安县、邵阳市新宁县商洛市丹凤县、重庆市忠县、甘孜石渠县、大连市西岗区、自贡市大安区、宁夏吴忠市青铜峡市、台州市玉环市、吉林市昌邑区、重庆市大渡口区、广西桂林市七星区








赣州市赣县区、菏泽市成武县、海口市琼山区、自贡市富顺县、绍兴市嵊州市、无锡市锡山区、昭通市昭阳区三明市建宁县、汕尾市城区、舟山市嵊泗县、佳木斯市向阳区、徐州市沛县、重庆市巴南区、东方市板桥镇甘南舟曲县、开封市杞县、马鞍山市雨山区、洛阳市偃师区、运城市永济市、台州市路桥区、内蒙古阿拉善盟额济纳旗红河建水县、平顶山市卫东区、大庆市林甸县、辽阳市文圣区、黔南三都水族自治县、临汾市古县、哈尔滨市双城区






区域:长治、淮南、石家庄、三亚、平凉、巴中、梅州、德州、韶关、东营、郑州、克拉玛依、西双版纳、太原、黄南、漯河、吴忠、延安、鞍山、厦门、孝感、楚雄、玉林、海南、阳江、海东、盘锦、齐齐哈尔、巴彦淖尔等城市。










嘉峪关市文殊镇、抚州市崇仁县、黄石市大冶市、东莞市石碣镇、韶关市曲江区




衢州市江山市、烟台市莱山区、吉林市永吉县、汉中市佛坪县、贵阳市云岩区、中山市港口镇、周口市淮阳区、红河石屏县、广西河池市东兰县
















潍坊市奎文区、淮北市濉溪县、怀化市麻阳苗族自治县、扬州市邗江区、云浮市云城区、临高县多文镇、双鸭山市岭东区  松原市扶余市、衢州市衢江区、张掖市甘州区、昆明市晋宁区、六安市霍邱县、丽水市庆元县
















区域:长治、淮南、石家庄、三亚、平凉、巴中、梅州、德州、韶关、东营、郑州、克拉玛依、西双版纳、太原、黄南、漯河、吴忠、延安、鞍山、厦门、孝感、楚雄、玉林、海南、阳江、海东、盘锦、齐齐哈尔、巴彦淖尔等城市。
















广西贵港市港北区、广西柳州市柳南区、台州市天台县、荆州市公安县、临汾市翼城县、佛山市高明区、吉安市井冈山市、贵阳市修文县、南昌市安义县、株洲市芦淞区
















鸡西市梨树区、丽江市永胜县、鸡西市鸡东县、定安县新竹镇、三亚市崖州区、乐东黎族自治县黄流镇、伊春市铁力市、文昌市会文镇、吕梁市中阳县杭州市临安区、新乡市封丘县、苏州市姑苏区、万宁市龙滚镇、抚州市崇仁县




长治市壶关县、迪庆维西傈僳族自治县、安康市旬阳市、德州市武城县、文山西畴县、通化市柳河县、怒江傈僳族自治州福贡县、湖州市南浔区  潮州市潮安区、泰州市兴化市、大同市天镇县、陇南市宕昌县、运城市芮城县、毕节市黔西市濮阳市台前县、赣州市信丰县、邵阳市新宁县、韶关市始兴县、六安市金寨县、临沂市沂南县、白沙黎族自治县荣邦乡
















黄冈市蕲春县、内蒙古赤峰市巴林右旗、宁夏银川市贺兰县、齐齐哈尔市昂昂溪区、阿坝藏族羌族自治州黑水县、周口市商水县宜宾市长宁县、丽江市宁蒗彝族自治县、朝阳市朝阳县、宝鸡市金台区、梅州市兴宁市、淮南市田家庵区凉山美姑县、洛阳市宜阳县、文昌市龙楼镇、衢州市龙游县、甘孜泸定县、广西百色市右江区




成都市双流区、运城市夏县、盐城市阜宁县、黔南长顺县、广西河池市南丹县、宜昌市枝江市、南平市邵武市、烟台市芝罘区、兰州市七里河区天津市东丽区、鞍山市岫岩满族自治县、内蒙古赤峰市红山区、榆林市米脂县、揭阳市榕城区、东莞市虎门镇、怀化市洪江市昭通市永善县、上海市金山区、琼海市博鳌镇、舟山市嵊泗县、益阳市桃江县、宁夏固原市西吉县




巴中市南江县、陵水黎族自治县隆广镇、温州市瓯海区、连云港市赣榆区、宣城市泾县、重庆市巫溪县、泉州市永春县、泰安市宁阳县、沈阳市苏家屯区宁波市北仑区、驻马店市泌阳县、玉溪市通海县、武威市民勤县、白银市平川区、宁夏中卫市海原县、黄山市黄山区、中山市南区街道徐州市贾汪区、南京市栖霞区、天津市宁河区、儋州市新州镇、荆州市洪湖市、益阳市安化县、自贡市贡井区、天水市麦积区、淮安市洪泽区
















景德镇市昌江区、衢州市衢江区、恩施州鹤峰县、晋城市沁水县、内蒙古巴彦淖尔市乌拉特后旗
















孝感市孝南区、广元市苍溪县、宁德市屏南县、六安市霍山县、内蒙古鄂尔多斯市康巴什区、上饶市玉山县

  在医疗数字化浪潮中,人工智能(AI)正加速进入临床实践。从影像识别、检验报告到辅助决策,AI正在重塑医生的工作方式,也在悄然改变着患者的就诊体验。AI能取代医生吗?面对这位“智能医生”,患者该如何理解它、使用它?它又如何成为医生的“眼睛”与“大脑”?

  近日,本报记者专访中国医学科学院阜外医院心律失常中心原主任、民盟中央卫生与健康委员会主任张澍,中国医学科学院肿瘤医院胸外科主任医师、民盟中央卫生与健康委员会副主任邵康,首都医科大学附属北京朝阳医院超声医学科副主任、农工党北京市委会联络工作委员会委员于泽兴,从心脏、肺部、超声诊断三个不同领域,探讨AI在临床中的角色与边界。

  张澍:AI是“标准答案”而人的健康是主观题

  当深度学习算法仅用0.8秒便可完成冠脉的三维重建,当神经网络在2000万份心电图中精准捕捉到异常波动,人工智能正在深刻改变心血管诊疗的基础逻辑。

  “AI的本质是一套算法,它建立在海量的医学知识和临床数据之上。”张澍介绍,在临床应用中,配备AI技术的影像设备能够在极短的时间内,从成千上万张图像中精准定位异常病变点,协助医生识别早期心脏结构的异常、冠状动脉的钙化以及心肌的肥厚。“这种高效的判断,甚至能够超越人眼。”

  在他看来,这正是人工智能的优势——速度快、处理量大、分析深入,最终目标是精准。然而,目前存在两种极端观点:一种认为AI已经能够取代医生,另一种则认为AI在医疗领域的应用并不可靠。张澍认为,通过大量案例和指南的“喂养”,AI能够迅速提供针对常见疾病和轻微病症的标准化诊断和建议。“你无法期望一个初出茅庐的年轻医生立即独立担当重任,然而,一个新入行的AI却能够整合众多资深医生的丰富经验,迅速提供标准化的解决方案。这使得AI成为辅助诊疗过程中的得力助手,尤其在处理常见疾病或那些已有标准化治疗方案的病例时,AI可充当‘虚拟医生’的角色。”

  然而,张澍强调,这种能力并不能无限制地扩展。人工智能在识别“共性”疾病方面表现出色,但人类的健康问题往往是一道“主观题”,其中包含着复杂且难以量化的“个性”因素。在处理复杂的心血管疾病,如心律失常时,AI技术能够协助医生快速识别潜在风险和心电图异常。然而,要深入理解疾病发展的全身性原因和动态变化过程,医生的临床经验和对患者个体状况的精准评估则显得尤为重要。“心脏并非独立运作的器官,其健康状况及功能表现受到心理状态、整体环境、生活习惯等多种因素的共同作用。”张澍指出。

  例如,焦虑的个体可能会经历胸闷和心悸等症状,这些不适感源于情绪对心脏功能的影响,而非心脏存在任何器质性问题。“即便AI技术再先进,目前它仍无法准确判断一个人是否正承受心理压力、睡眠障碍,或是家庭与环境的变动。目前我们所提供的训练数据远远不足,因为与‘心’相关的人的整体状态,往往不是仅凭临床‘指标+图像’就能完全阐释的。”张澍进一步补充道。

  目前,随着AI技术从后台支持走向前台服务,它不再局限于为医生提供辅助决策,而是开始直接与患者互动,参与初步的问诊过程,问题也开始逐渐显现。“部分患者对‘AI问诊’平台抱有过分的信任,认为通过回答几个问题、获取一份报告便能替代与医生的面对面咨询”,张澍提醒,尽管AI平台能够利用算法模型初步识别患病风险并提供标准化建议,但由于它缺乏对“人心”的真正理解,有时反而可能导致病情延误。

  “AI可以是一个优秀的‘起点’,但绝非‘终极诊断’系统。”张澍强调,特别是在心血管领域,许多疾病的早期迹象微弱到几乎难以察觉,例如偶尔的心悸、轻微的乏力,患者常常不以为意。然而,这些看似普通的症状背后,可能隐藏着严重的心律失常风险。这类复杂且隐蔽的病情,单凭一台AI、一次线上咨询,是无法实现精确识别的。

  如何把握AI在现代临床实践中的应用?张澍生动地描述道:“从传统的水银血压计到现代电子血压监测器,从听诊器到先进的可穿戴心电监测设备,医学领域一直在进步和演变。AI的融入,正是这一持续发展过程中的一个环节,而且它代表了一次真正的革命。”

  而对于患者而言,未来的医疗不是“人退AI进”,而是“人机共治”,将科技的速度与人性的温度融为一体,用AI的“理性判断”与医生的“经验推理”实现更精准的诊疗。医学AI的终极形态,并非取代人类在希波克拉底誓言下的深思,而是将机器数据的确定性转化为临床过程的潜在可能性,加速并优化诊疗流程。在这个人机共存的诊疗新时代,每一次心跳既是生物电信号,也是生命故事的独特旋律。

  邵康:AI是个“好学生”但还不是“好医生”

  作为深耕一线的资深胸外科专家,邵康对人工智能在医疗领域的应用有着深刻洞察:“AI就像个过目不忘的超级学霸,堪称医生的‘超级大脑’,是极具潜力的临床助手。”

  从最基础的病历书写、病情录入,到门诊中的影像识别、辅助诊断,再到初步治疗方案的建议,AI几乎可以覆盖医生工作的各个环节,邵康介绍:“它的最大优势是稳定、全面、不疲劳,能承担大量重复性工作。尤其在图像处理方面,AI的表现已经超过了许多经验尚浅的医生。”

  以肺结节筛查为例,传统阅片模式下,医生每看一个病人,需要手动翻阅300至400张 CT断层图像,不仅耗时耗力,还易出现视觉疲劳导致漏诊。而 AI凭借深度学习算法,可在数秒内完成全肺扫描,不仅能精准标注病灶位置,还能量化分析结节大小、密度、边缘特征等参数,并基于大数据模型给出初步良恶性概率评估。

  “以往对一位患者的影像判读需5至10分钟,现在 AI辅助下仅需数秒即可完成初筛。”邵康提到,这种效率的提升,显著优化了诊疗流程,让医生得以将更多精力投入到复杂病情研判与个体化治疗方案制定中。

  对于肺癌影像诊断的准确率,AI已能与经验丰富的主治医师比肩。临床实践中,医生只要输入准确的疾病相关信息,AI就可以根据指南、共识给出全面、准确的疾病诊疗方案供医生参考。

  邵康直言:“对于知识更新滞后的从业者而言,部分成熟的AI系统确实展现出更强的知识储备与分析能力。”然而,在肯定技术优势的同时,邵康反复强调 AI的临床应用边界:“医学的本质是针对‘生病之人’,而非仅仅是‘疾病’。”

  临床实践中,患者的基础状况、心理状态、生活环境等信息,往往是左右诊疗决策的关键变量。这些难以量化的“隐藏参数”,恰是 AI当前的技术盲区。

  于泽兴:超声不是“看图说话”那么简单

  当人们谈论人工智能对医疗行业的影响时,影像科常常被视为“最容易被AI替代”的领域,甚至有人断言,AI时代最先“下岗”的,将是影像科医生。

  “确实,从很早开始,就有团队尝试将AI引入影像诊断,尤其在放射科领域应用较多。”于泽兴介绍,像X光片、CT片这类标准化的平面图像,非常适合深度学习算法进行训练与识别,因此AI在这些领域的发展起步较快。

  不过,作为医学影像中的重要分支,超声科的情况却远比想象中复杂。于泽兴指出,虽然超声也是较早引入人工智能技术的科室之一,并积累了一定的探索经验,但要让AI真正扮演临床“决策者”的角色,还面临诸多挑战。

  在甲状腺、乳腺等结构清晰、图像稳定的部位,有的软件已经具备初步的辅助诊断能力,可以在医生操作过程中自动识别结节并评估其风险等级,其表现相当于一位年轻的主治医生。

  然而,这种应用目前仍局限于少数场景。“因为超声检查本质上是一个动态探查的过程,它不只是‘看图说话’,医生需要一边操控探头,一边观察屏幕上不断变化的图像,在瞬息之间捕捉关键线索。”于泽兴表示,这一过程中,医生的感知、操作和认知能力缺一不可,经验远比图像本身更为关键。

  “胖的人、瘦的人,器官的位置和形态不一样,超声医生扫查时的角度、范围、按压的力度都不同,需要实时调整、因人而异。”于泽兴说。“这些操作细节,都是AI目前难以胜任的。”

  那么,如果仅从图像分析来说,患者是否可以上传报告,在AI上获取“诊断建议”?

  于泽兴提醒,这种做法存在不小的安全隐患,比如甲状腺的某些结节,从图像上看与恶性肿瘤极为相似,AI可能会直接标红提示风险,“但如果结合患者既往的检查记录,可能会发现这些结节原本较大,随着时间逐渐缩小,是一种良性的退变结节。而这种需要综合病史、遗传史乃至病程变化作出的判断,是当前AI尚不具备的能力。”

  不过,应该看到的是,在目前超声医生资源紧张的背景下,无论是三甲医院还是基层机构,合理引入AI,将在一定程度上缓解人力压力。“技术无法取代医生的经验和判断,但它可以成为医生的工具,为他们加一双‘眼’、多一双‘手’,把专业力量用在更需要的地方。”于泽兴说。(完)(《中国新闻》报刘益伶报道) 【编辑:张子怡】

相关推荐: