bilibili私人直播间_: 卓越的思考要素,是否能引导人们的认知?

bilibili私人直播间: 卓越的思考要素,是否能引导人们的认知?

更新时间: 浏览次数:56

bilibili私人直播间: 卓越的思考要素,是否能引导人们的认知?各观看《今日汇总》

bilibili私人直播间: 卓越的思考要素,是否能引导人们的认知?各热线观看2025已更新(2025已更新)












区域:凉山、滨州、延安、遵义、襄樊、杭州、广安、舟山、鹤岗、铜仁、温州、呼和浩特、中山、三明、张家口、随州、萍乡、宜宾、黄石、上饶、许昌、黑河、西双版纳、平顶山、延边、拉萨、怀化、海东、上海等城市。

















大团圆结亲情会高洁:(2)
















黄油游戏网站SSTM.MO入口
















区域:凉山、滨州、延安、遵义、襄樊、杭州、广安、舟山、鹤岗、铜仁、温州、呼和浩特、中山、三明、张家口、随州、萍乡、宜宾、黄石、上饶、许昌、黑河、西双版纳、平顶山、延边、拉萨、怀化、海东、上海等城市。





























区域:凉山、滨州、延安、遵义、襄樊、杭州、广安、舟山、鹤岗、铜仁、温州、呼和浩特、中山、三明、张家口、随州、萍乡、宜宾、黄石、上饶、许昌、黑河、西双版纳、平顶山、延边、拉萨、怀化、海东、上海等城市。
















bilibili私人直播间: 凸显现实的集体行动,难道不值得我们赞赏?
















bilibili私人直播间全国服务区域:
















黔东南天柱县、济宁市梁山县、晋中市太谷区、内蒙古包头市青山区、泉州市永春县、伊春市丰林县、万宁市山根镇
















咸阳市三原县、襄阳市谷城县、澄迈县永发镇、驻马店市泌阳县、温州市瑞安市、乐山市市中区、汉中市城固县、杭州市下城区、菏泽市郓城县
















荆州市松滋市、昭通市大关县、云浮市罗定市、运城市盐湖区、伊春市南岔县、乐山市峨眉山市、延安市志丹县、营口市站前区、临沂市莒南县、内蒙古鄂尔多斯市伊金霍洛旗张掖市临泽县、衢州市常山县、内蒙古赤峰市巴林左旗、海口市美兰区、榆林市横山区、长沙市雨花区、重庆市渝北区、运城市垣曲县、临高县东英镇安顺市普定县、阜阳市颍泉区、陇南市武都区、湖州市德清县、铜仁市万山区、大庆市大同区、盐城市滨海县、内蒙古巴彦淖尔市临河区、黔东南从江县
















阜阳市阜南县、大连市沙河口区、九江市濂溪区、淄博市桓台县、牡丹江市宁安市、黄冈市黄梅县、武汉市武昌区、楚雄武定县西宁市湟源县、盐城市射阳县、海口市龙华区、菏泽市成武县、苏州市吴江区、黄山市黄山区、济南市历下区、南平市建阳区、宿州市砀山县、内蒙古呼和浩特市土默特左旗大庆市大同区、海东市平安区、内蒙古赤峰市喀喇沁旗、信阳市平桥区、连云港市灌云县宜春市铜鼓县、淄博市淄川区、攀枝花市西区、邵阳市新宁县、云浮市云安区
















广西贺州市昭平县、延安市甘泉县、肇庆市四会市、株洲市茶陵县、新乡市红旗区、海西蒙古族乌兰县、广西南宁市邕宁区、宜宾市长宁县、德州市德城区六盘水市六枝特区、南京市六合区、黔南福泉市、榆林市佳县、大连市旅顺口区、重庆市开州区、东方市东河镇、临高县临城镇、昌江黎族自治县石碌镇
















滨州市沾化区、内蒙古鄂尔多斯市伊金霍洛旗、临汾市侯马市、漯河市舞阳县、昌江黎族自治县七叉镇、株洲市芦淞区、红河绿春县、济南市历下区营口市西市区、济南市商河县、攀枝花市西区、商丘市民权县、庆阳市正宁县、咸宁市咸安区、佛山市顺德区、广西桂林市秀峰区万宁市和乐镇、威海市乳山市、丹东市宽甸满族自治县、衡阳市衡阳县、菏泽市单县、温州市平阳县焦作市马村区、杭州市临安区、青岛市黄岛区、临沧市临翔区、琼海市潭门镇、北京市大兴区上饶市余干县、朔州市朔城区、吉安市吉水县、珠海市金湾区、双鸭山市友谊县、衡阳市蒸湘区、重庆市璧山区、铜川市宜君县、孝感市安陆市牡丹江市西安区、内蒙古通辽市科尔沁区、宿州市灵璧县、本溪市桓仁满族自治县、广西来宾市忻城县、广西南宁市隆安县、黔南三都水族自治县、营口市西市区宁夏吴忠市青铜峡市、攀枝花市米易县、晋中市灵石县、安庆市太湖县、临高县多文镇、南通市启东市、湛江市麻章区、安顺市普定县、常州市金坛区、万宁市东澳镇保山市昌宁县、临夏东乡族自治县、内蒙古鄂尔多斯市杭锦旗、嘉兴市南湖区、毕节市金沙县、长春市榆树市、新乡市延津县、宝鸡市扶风县、丹东市宽甸满族自治县
















东方市东河镇、四平市铁西区、保亭黎族苗族自治县什玲、绥化市肇东市、本溪市南芬区、阿坝藏族羌族自治州汶川县、辽阳市宏伟区、西宁市城西区曲靖市沾益区、海南贵德县、汕尾市城区、南京市鼓楼区、铜仁市思南县、七台河市茄子河区、枣庄市山亭区海西蒙古族德令哈市、天津市和平区、内江市隆昌市、临沂市莒南县、安康市岚皋县绥化市青冈县、直辖县天门市、周口市商水县、枣庄市滕州市、大同市浑源县、东莞市高埗镇、西安市阎良区常州市天宁区、延边龙井市、广西桂林市雁山区、江门市蓬江区、徐州市铜山区、运城市绛县、福州市永泰县




许昌市魏都区、亳州市蒙城县、菏泽市单县、毕节市纳雍县、内蒙古兴安盟科尔沁右翼前旗、海南贵南县、岳阳市岳阳楼区、哈尔滨市木兰县、五指山市毛阳宿州市埇桥区、万宁市山根镇、鸡西市鸡冠区、淄博市淄川区、东莞市道滘镇、营口市大石桥市、攀枝花市东区、益阳市沅江市、铁岭市西丰县潍坊市昌邑市、内蒙古乌兰察布市丰镇市、北京市丰台区、甘孜乡城县、乐东黎族自治县佛罗镇、信阳市光山县内蒙古通辽市库伦旗、襄阳市谷城县、普洱市西盟佤族自治县、洛阳市孟津区、青岛市莱西市临沂市莒南县、黄冈市黄州区、上海市青浦区、乐东黎族自治县九所镇、台州市临海市、衡阳市石鼓区、惠州市龙门县、阿坝藏族羌族自治州红原县、龙岩市武平县广西桂林市平乐县、黔东南麻江县、龙岩市新罗区、肇庆市封开县、广州市增城区、内蒙古赤峰市宁城县、楚雄大姚县、德州市陵城区
















蚌埠市五河县、临汾市曲沃县、河源市源城区、乐东黎族自治县尖峰镇、宁夏中卫市海原县梅州市大埔县、南京市雨花台区、滨州市惠民县、天水市武山县、上饶市婺源县、十堰市张湾区、大理剑川县、甘孜巴塘县扬州市仪征市、西安市鄠邑区、琼海市中原镇、内蒙古锡林郭勒盟锡林浩特市、吉安市吉水县、湖州市南浔区赣州市于都县、长沙市宁乡市、凉山布拖县、南京市建邺区、汕头市南澳县、楚雄楚雄市、武威市民勤县、阜新市太平区、肇庆市高要区、乐东黎族自治县九所镇广西钦州市灵山县、温州市泰顺县、阳江市阳东区、咸阳市永寿县、甘南玛曲县、成都市简阳市、邵阳市双清区、杭州市西湖区、玉溪市易门县

  在医疗数字化浪潮中,人工智能(AI)正加速进入临床实践。从影像识别、检验报告到辅助决策,AI正在重塑医生的工作方式,也在悄然改变着患者的就诊体验。AI能取代医生吗?面对这位“智能医生”,患者该如何理解它、使用它?它又如何成为医生的“眼睛”与“大脑”?

  近日,本报记者专访中国医学科学院阜外医院心律失常中心原主任、民盟中央卫生与健康委员会主任张澍,中国医学科学院肿瘤医院胸外科主任医师、民盟中央卫生与健康委员会副主任邵康,首都医科大学附属北京朝阳医院超声医学科副主任、农工党北京市委会联络工作委员会委员于泽兴,从心脏、肺部、超声诊断三个不同领域,探讨AI在临床中的角色与边界。

  张澍:AI是“标准答案”而人的健康是主观题

  当深度学习算法仅用0.8秒便可完成冠脉的三维重建,当神经网络在2000万份心电图中精准捕捉到异常波动,人工智能正在深刻改变心血管诊疗的基础逻辑。

  “AI的本质是一套算法,它建立在海量的医学知识和临床数据之上。”张澍介绍,在临床应用中,配备AI技术的影像设备能够在极短的时间内,从成千上万张图像中精准定位异常病变点,协助医生识别早期心脏结构的异常、冠状动脉的钙化以及心肌的肥厚。“这种高效的判断,甚至能够超越人眼。”

  在他看来,这正是人工智能的优势——速度快、处理量大、分析深入,最终目标是精准。然而,目前存在两种极端观点:一种认为AI已经能够取代医生,另一种则认为AI在医疗领域的应用并不可靠。张澍认为,通过大量案例和指南的“喂养”,AI能够迅速提供针对常见疾病和轻微病症的标准化诊断和建议。“你无法期望一个初出茅庐的年轻医生立即独立担当重任,然而,一个新入行的AI却能够整合众多资深医生的丰富经验,迅速提供标准化的解决方案。这使得AI成为辅助诊疗过程中的得力助手,尤其在处理常见疾病或那些已有标准化治疗方案的病例时,AI可充当‘虚拟医生’的角色。”

  然而,张澍强调,这种能力并不能无限制地扩展。人工智能在识别“共性”疾病方面表现出色,但人类的健康问题往往是一道“主观题”,其中包含着复杂且难以量化的“个性”因素。在处理复杂的心血管疾病,如心律失常时,AI技术能够协助医生快速识别潜在风险和心电图异常。然而,要深入理解疾病发展的全身性原因和动态变化过程,医生的临床经验和对患者个体状况的精准评估则显得尤为重要。“心脏并非独立运作的器官,其健康状况及功能表现受到心理状态、整体环境、生活习惯等多种因素的共同作用。”张澍指出。

  例如,焦虑的个体可能会经历胸闷和心悸等症状,这些不适感源于情绪对心脏功能的影响,而非心脏存在任何器质性问题。“即便AI技术再先进,目前它仍无法准确判断一个人是否正承受心理压力、睡眠障碍,或是家庭与环境的变动。目前我们所提供的训练数据远远不足,因为与‘心’相关的人的整体状态,往往不是仅凭临床‘指标+图像’就能完全阐释的。”张澍进一步补充道。

  目前,随着AI技术从后台支持走向前台服务,它不再局限于为医生提供辅助决策,而是开始直接与患者互动,参与初步的问诊过程,问题也开始逐渐显现。“部分患者对‘AI问诊’平台抱有过分的信任,认为通过回答几个问题、获取一份报告便能替代与医生的面对面咨询”,张澍提醒,尽管AI平台能够利用算法模型初步识别患病风险并提供标准化建议,但由于它缺乏对“人心”的真正理解,有时反而可能导致病情延误。

  “AI可以是一个优秀的‘起点’,但绝非‘终极诊断’系统。”张澍强调,特别是在心血管领域,许多疾病的早期迹象微弱到几乎难以察觉,例如偶尔的心悸、轻微的乏力,患者常常不以为意。然而,这些看似普通的症状背后,可能隐藏着严重的心律失常风险。这类复杂且隐蔽的病情,单凭一台AI、一次线上咨询,是无法实现精确识别的。

  如何把握AI在现代临床实践中的应用?张澍生动地描述道:“从传统的水银血压计到现代电子血压监测器,从听诊器到先进的可穿戴心电监测设备,医学领域一直在进步和演变。AI的融入,正是这一持续发展过程中的一个环节,而且它代表了一次真正的革命。”

  而对于患者而言,未来的医疗不是“人退AI进”,而是“人机共治”,将科技的速度与人性的温度融为一体,用AI的“理性判断”与医生的“经验推理”实现更精准的诊疗。医学AI的终极形态,并非取代人类在希波克拉底誓言下的深思,而是将机器数据的确定性转化为临床过程的潜在可能性,加速并优化诊疗流程。在这个人机共存的诊疗新时代,每一次心跳既是生物电信号,也是生命故事的独特旋律。

  邵康:AI是个“好学生”但还不是“好医生”

  作为深耕一线的资深胸外科专家,邵康对人工智能在医疗领域的应用有着深刻洞察:“AI就像个过目不忘的超级学霸,堪称医生的‘超级大脑’,是极具潜力的临床助手。”

  从最基础的病历书写、病情录入,到门诊中的影像识别、辅助诊断,再到初步治疗方案的建议,AI几乎可以覆盖医生工作的各个环节,邵康介绍:“它的最大优势是稳定、全面、不疲劳,能承担大量重复性工作。尤其在图像处理方面,AI的表现已经超过了许多经验尚浅的医生。”

  以肺结节筛查为例,传统阅片模式下,医生每看一个病人,需要手动翻阅300至400张 CT断层图像,不仅耗时耗力,还易出现视觉疲劳导致漏诊。而 AI凭借深度学习算法,可在数秒内完成全肺扫描,不仅能精准标注病灶位置,还能量化分析结节大小、密度、边缘特征等参数,并基于大数据模型给出初步良恶性概率评估。

  “以往对一位患者的影像判读需5至10分钟,现在 AI辅助下仅需数秒即可完成初筛。”邵康提到,这种效率的提升,显著优化了诊疗流程,让医生得以将更多精力投入到复杂病情研判与个体化治疗方案制定中。

  对于肺癌影像诊断的准确率,AI已能与经验丰富的主治医师比肩。临床实践中,医生只要输入准确的疾病相关信息,AI就可以根据指南、共识给出全面、准确的疾病诊疗方案供医生参考。

  邵康直言:“对于知识更新滞后的从业者而言,部分成熟的AI系统确实展现出更强的知识储备与分析能力。”然而,在肯定技术优势的同时,邵康反复强调 AI的临床应用边界:“医学的本质是针对‘生病之人’,而非仅仅是‘疾病’。”

  临床实践中,患者的基础状况、心理状态、生活环境等信息,往往是左右诊疗决策的关键变量。这些难以量化的“隐藏参数”,恰是 AI当前的技术盲区。

  于泽兴:超声不是“看图说话”那么简单

  当人们谈论人工智能对医疗行业的影响时,影像科常常被视为“最容易被AI替代”的领域,甚至有人断言,AI时代最先“下岗”的,将是影像科医生。

  “确实,从很早开始,就有团队尝试将AI引入影像诊断,尤其在放射科领域应用较多。”于泽兴介绍,像X光片、CT片这类标准化的平面图像,非常适合深度学习算法进行训练与识别,因此AI在这些领域的发展起步较快。

  不过,作为医学影像中的重要分支,超声科的情况却远比想象中复杂。于泽兴指出,虽然超声也是较早引入人工智能技术的科室之一,并积累了一定的探索经验,但要让AI真正扮演临床“决策者”的角色,还面临诸多挑战。

  在甲状腺、乳腺等结构清晰、图像稳定的部位,有的软件已经具备初步的辅助诊断能力,可以在医生操作过程中自动识别结节并评估其风险等级,其表现相当于一位年轻的主治医生。

  然而,这种应用目前仍局限于少数场景。“因为超声检查本质上是一个动态探查的过程,它不只是‘看图说话’,医生需要一边操控探头,一边观察屏幕上不断变化的图像,在瞬息之间捕捉关键线索。”于泽兴表示,这一过程中,医生的感知、操作和认知能力缺一不可,经验远比图像本身更为关键。

  “胖的人、瘦的人,器官的位置和形态不一样,超声医生扫查时的角度、范围、按压的力度都不同,需要实时调整、因人而异。”于泽兴说。“这些操作细节,都是AI目前难以胜任的。”

  那么,如果仅从图像分析来说,患者是否可以上传报告,在AI上获取“诊断建议”?

  于泽兴提醒,这种做法存在不小的安全隐患,比如甲状腺的某些结节,从图像上看与恶性肿瘤极为相似,AI可能会直接标红提示风险,“但如果结合患者既往的检查记录,可能会发现这些结节原本较大,随着时间逐渐缩小,是一种良性的退变结节。而这种需要综合病史、遗传史乃至病程变化作出的判断,是当前AI尚不具备的能力。”

  不过,应该看到的是,在目前超声医生资源紧张的背景下,无论是三甲医院还是基层机构,合理引入AI,将在一定程度上缓解人力压力。“技术无法取代医生的经验和判断,但它可以成为医生的工具,为他们加一双‘眼’、多一双‘手’,把专业力量用在更需要的地方。”于泽兴说。(完)(《中国新闻》报刘益伶报道) 【编辑:张子怡】

相关推荐: